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Abstract

An approximate analytical model to predict the response of a fluid-filled shell of arbitrary thickness
impacting with a solid elastic sphere is proposed and the limits of applicability of the equations developed
are discussed. The model is based on combining the Hertzian contact stiffness and the effective local
membrane and bending stiffness to derive implicit expressions for global impact characteristics including
the duration of impact, the peak force transmitted, peak global acceleration of shell and sphere, and the
resultant pressures induced in the fluid. Closed-form explicit expressions are also derived to predict whether
the pressure response in the fluid will be hydrostatic or will exhibit large dynamic transients of pressure (and
shear strain). It should be noted that the impact of hollow/empty shells with solid spheres, as well as the
impact of shells with an elastic half-space, can be straightforwardly treated as limiting cases. The model is
of obvious relevance to head impact modelling and selected parametric studies of the response of fluid-filled
shells with geometric and material properties about those typical for the human head are given.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Research into the occurrence and prevention of head injury is driven by the considerable
personal, societal and financial costs involved. Several sets of figures exist but, as a guide, for 1993
an estimated two million persons suffered brain injuries in the US alone and four-hundred
thousand of these were hospitalized. Because of the scale of the problem, a broad range of
research studies based on cadaveric, analytical or numerical techniques have been undertaken to
characterize the response of the human head to impact and in particular to attempt to explain
potential injury mechanisms.
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Early analytical work includes that of Anzelius [1] who developed a model assuming
the head to be a rigid spherical vessel filled with inviscid fluid. The impact was modelled as a delta
function and equations were derived for determining the pressure within the liquid (inviscid,
compressible) as a function of time. Guttinger [2] modelled the head in a similar manner, but
rather than the shell travelling at a constant velocity and undergoing sudden arrest, his model
describes the shell acquiring a time-dependent velocity from rest or uniform motion.
Engin [3] proposed an analytical model, which included bending and membrane compliance
of the shell, and studied the response for a fluid-filled sphere subjected to delta loading.
This latter analysis was subsequently extended to loadings of finite duration by Kenner and
Goldsmith [4].
More recently, the finite element method has become the numerical approach of choice,

principally because of the ease with which irregular geometry and material non-linearities
can be modelled. Many studies have been carried out and the reader is referred to three
useful reviews of work on finite element models of head impacts [5–7]. Models have become
increasingly sophisticated; Ruan et al. [8] simulated anatomical details including scalp,
dura matter, falx cerebri and brain, giving the brain and scalp viscoelastic properties and the
other tissues elastic properties; Bandak et al. [9] developed a geometrically very accurate
patient-specific model of a human skull based on computed tomography imaging data with
material properties assigned based on an empirical relationship between Hounsfield number
and Young’s modulus. Young and Morfey [10] returned to the problem of an elastic fluid-filled
spherical shell and carried out an extensive parametric study on the response to an applied
force–time history using the finite element approach. The authors were able to clearly identify
regions of significant dynamic magnification of the intra-cranial pressure and found that the
response could be conveniently collapsed on the impact duration over the period of the first mode
of vibration of the system. An approximate closed-form expression for the period of this mode
was then obtained by Young [11] and compared to results obtained using full three-dimensional
elasticity equations.
To the author’s knowledge, none of the previous work has approached the problem of

developing closed-form expressions to predict the severity of impact (as determined for example
by the head injury criterion, HIC) or other global characteristics such as the maximum force
transmitted, the maximum acceleration and the impact duration. In fact, very little work has been
done in modelling the contact mechanics of the problem, with both analytical and finite element
models mostly based on assumed or experimentally determined force–time histories applied to the
models. In the present paper an analytical model of the dynamic contact problem is developed in
order to predict global impact characteristics. This model is then used to provide expressions for
predicting the conditions under which a dynamic, rather than quasi-static, intra-cranial response
might be expected. Although this model is based on a number of simplifying assumptions,
important conclusions can be drawn regarding the response of the human head to impact. The
author has presented some finite element [12,13] and some experimental [14] corroborations of
this analytical model that demonstrate its predictive accuracy.
Although the primary motivation of the work is to study the response of the human head to

impact, the analytical models developed can obviously be applied to a range of problems of
interest in more traditional engineering areas involving the response of fluid-filled shell structures
to impact.
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2. Theory: impact of a fluid-filled shell of arbitrary thickness with a solid sphere

Consider the direct, rather than oblique, impact of two bodies: a fluid-filled spherical shell of
mass msh travelling at a velocity vsh and a solid sphere of mass msol travelling at a velocity vsol as
shown in Fig. 1. The outer radius of the shell is Rsh; the shell thickness is h and the shell material
properties are assumed to be homogeneous and isotropic with a Young’s modulus Esh; a Poisson
ratio nsh and a density rsh: The shell is filled with an inviscid fluid of density rf and bulk modulus
B and Rf is the outer radius of the fluid (inner radius of the shell). The radius of the solid sphere is
Rsol and the material properties of the sphere are also assumed to be homogeneous and isotropic
with Young’s modulus Esol ; the Poisson ratio nsol and a density rsol :

2.1. Contact laws

The Hertzian contact stiffness between two solid spheres and the contact stiffness for a thin
spherical shell with a uniform pressure applied on a small spherical cap will be considered
independently of one another.

2.1.1. Hertzian contact stiffness kH

Assuming a Hertzian contact model, the force deflection relationship between the two non-
conforming bodies as given by Hertz [15] is

F ¼ kHDx
3=2
H ; ð1Þ

where F is the applied force, DxH is the mutual approach of distant points in the two solids, and
the contact stiffness kH is given by

kH ¼ 4
3
R�1=2E�; ð2Þ
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Fig. 1. Diagrammatic representation of impact model.

P.G. Young / Journal of Sound and Vibration 267 (2003) 1107–1126 1109



where

1

R� ¼
1

Rsol

þ
1

Rsh

and
1

E� ¼
1� n2sol

� �
Esol

þ
1� n2sh

� �
Esh

:

The above contact stiffness is applicable for continuous smooth, frictionless and non-
conforming contact surfaces providing:

(i) The ratio of the maximum contact–patch radius a to the relative radius of curvature R� is
small (a=R�

51).
(ii) The maximum contact radius a is small compared with the dimensions of each body. (This

implies a=h51:)

2.1.2. Shell (membrane and bending) stiffness ksh

For a thin empty spherical shell the maximum deflection Dxsh from a force F applied as a
uniform pressure on a small spherical cap of radius a (a=Rsh51) is given by

F ¼ kshDxsh; ð3Þ

where the stiffness ksh is given by [16]

ksh ¼ 2:3ðEshh2Þ=ðRshð1� n2shÞ
ð1=2ÞÞ: ð4Þ

The applied pressure is resisted by both membrane and bending action in the shell. The above
expression is an excellent approximation for:

(i) a=h51 providing (4/27ðh=RshÞ
2ð1� n2shÞÞ

1=4o0:4 which will hold true for h=Rsho0:2:
(ii) a=h not 51 providing a=ðRshhÞ1=2ð12ð1� n2shÞÞ

1=4o0:4: This latter condition can prove quite
restrictive for very thin shells h=Rsh51 as one can quite clearly imagine impacts such that
a=Rsh51 and a=hb1:

There are several important points to note regarding the formulae given above:

(1) Eqs. (3) and (4) were shown in previous work by the author to be applicable to spherical shells
filled with compressible or incompressible fluid; in other words, the bulk modulus of the fluid
was shown to have no effect on the stiffness of the shell.

(2) The region over which both membrane and bending deformations predominantly occur is
very localized and limited at most to a half-angle y about the centre of the applied pressure
given by y ¼ arcsinð1:65ðh=RshÞÞ: For h=Rsho0:2 this implies that the stiffness is significantly
influenced by at most a 20� half-angle about the centre of pressure. This is significant as, from
a stiffness perspective, one need only consider the structure in a small window about the
impact site (i.e., one can conveniently, within limits, disregard structural characteristics, such
as material properties and the geometry, outside this window).

(3) The linear stiffness given by equation ksh is not a function of the circular planform area (of
radius a) over which the pressure is applied. This is important, as this area is not constant for
non-conforming contacts. By implication it is also not a function of the pressure distribution
on the spherical cap, which is also, in the case of contact problems, non-uniform.
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2.2. Analytical model: implicit equation for Fmax

The Hertzian contact stiffness kH and the shell contact stiffness ksh will be considered decoupled
and the system will be solved assuming the two stiffnesses can be considered in series. This
decoupling is based on assuming that the contact–patch area is determined solely by the Hertzian
contact mechanics and that the local deformations due to compliance of the shell do not
appreciably increase this area. Since the shell stiffness ksh is not a function of the contact area,
introducing this assumption will not influence the compliance of the shell (membrane and bending
deformations) however it would tend to underestimate the effective Hertzian contact stiffness.
Assuming a conservative system and applying the principle of conservation of energy gives

1
2
mshv2sh þ

1
2
msolv

2
sol ¼

1
2
kshDx2

sh þ
2
5
kHDx

5=2
H þ 1

2
ðmsh þ msolÞv2sh2sol ; ð5Þ

where Dxsh is the deformation due to membrane and bending action in the shell, vsh2sol is the
velocity of the shell–sphere system at the point of maximum compression and DxH is the
deformation due to the Hertzian contact deformations in both the shell and the solid sphere
combined.
Applying the principle of conservation of momentum

mshvsh þ msolvsol ¼ ðmsh þ msolÞvsh2sol : ð6Þ

Solving Eq. (6) for vsh2sol :

vsh2sol ¼
ðmshvsh þ msolvsolÞ

ðmsh þ msolÞ
: ð7Þ

The maximum deformations Dxsh and DxH can straightforwardly be expressed in terms of the
maximum force transmitted Fmax:

Dxsh ¼ Fmax=ksh and DxH ¼ ðFmax=kHÞ2=3: ð8Þ

Substituting Eqs. (7) and (8) into Eq. (5) and rearranging

m�Dv2 ¼
F2

max

ksh

þ
4

5

F
5=3
max

k
2=3
H

; ð9Þ

where Dv ¼ vsh � vsol and 1=m� ¼ 1=msh þ 1=msol :
Expression (9) is an implicit (and approximate) expression for the maximum force transmitted

Fmax which includes both the effects of Hertzian contact deformations in shell and sphere and
local membrane and bending action in the shell. Eq. (9) can be solved numerically for Fmax and the
maximum deformations and the acceleration of the fluid-filled shell can then be expressed
straightforwardly as

Dx ¼ Dxsh þ DxH ¼
Fmax

ksh

þ
Fmax

kH

� �2=3

; ð10Þ

amax ¼
Fmax

msh

: ð11Þ

The time of impact Tp can then be obtained by numerical integration of the force–deflection
curve. Alternatively, if simple harmonic motion is assumed with an effective linear stiffness keffec
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given by

keffec ¼
Fmax

Dx
¼ 1=

1

ksh
þ

1

k
2=3
H F

1=3
max

 !
; ð12Þ

the time of impact Tp can be approximated by

Tp ¼ p

ffiffiffiffiffiffiffiffiffiffi
m�

keffec

s
: ð13Þ

The HIC, a commonly used measure of the severity of an impact to the head, is defined by the
expression

HIC ¼ maxðt1; t2Þ
1

ðt2 � t1Þ
3=2

Z t2

t1

aðtÞ dt


 �5=2* +
; ð14Þ

where the notation maxðt1 : t2Þ signifies that the time interval t1 to t2 is chosen to maximize the
expression in brackets. Assuming the acceleration of the head aðtÞ is given by

aðtÞ ¼
Fmax

msh

sin p
t

Tp

� �
ð15Þ

for 0otoTp; the time interval which maximizes expression (14) can straightforwardly be obtained
by substituting Eq. (15) into Eq. (14) and solving simultaneously

@ðHICÞ
@t1

¼ 0;

@ðHICÞ
@t2

¼ 0 ð16Þ

to give t1=Tp ¼ 0:1648852 and t2=Tp ¼ 0:8351148: Substituting back into expression (14) gives

HIC ¼
7:25311

p5=2
Fmax

Msh

Tp

¼
7:25311

p3=2
Fmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ksh
þ

1

k
2=3
H F

1=3
max

 !
msol

mshðmsol þ mshÞ

� �vuut : ð17Þ

2.3. Limiting cases

Consider two limiting cases: Case I, Hertzian impact neglecting shell bending/membrane
deformations; and Case II, shell impact with a rigid ball neglecting local Hertzian deformations.

Limiting Case I, ksh5kH : Neglecting the contribution of the Hertzian contact spring or, in other
words, assuming kH-N expressions (9)–(11) and (13) reduce to

m�Dv2 ¼
F2

max

ksh

; ð18Þ
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Fmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:3Eshh2m�Dv2

Rsh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2shÞ

q
vuut ; ð19Þ

Dxsh ¼
Fmax

ksh

¼ Dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�Rsh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2shÞ

q
2:3Eshh2

vuut
; ð20Þ

Tp ¼ p

ffiffiffiffiffiffi
m�

ksh

s
¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�Rsh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2shÞ

q
2:3Eshh2

vuut
; ð21Þ

amax ¼
Fmax

msh

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:3Eshh2m�Dv2

m2
shRsh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2shÞ

q
vuut : ð22Þ

Limiting Case II, kshbkH : Neglecting the contribution from local membrane and bending
action in the shell, or in other words assuming ksh-N, the problem reduces to the classical
Hertzian quasi-static impact theory

m�Dv2 ¼
4

5

F
5=3
max

k
2=3
H

; ð23Þ

Fmax ¼
5

4
k
2=3
H m�Dv2

� �3=5

¼
4

3

15

16

� �3=5

R�1=5E�2=5m�3=5ðDvÞ6=5; ð24Þ

amax ¼
4

3

15

16

� �3=5

R�1=5E�2=5m
�3=5

msh

ðDvÞ6=5; ð25Þ

DxH ¼
Fmax

kH

� �2=3

¼
15

16

m�Dv2

R�1=2E�
: ð26Þ

The time of impact obtained by numerical integration of the force–deflection curve [17] is given
by

Tp ¼ 2:87
m�2

R�E�2Dv

� �1=5

: ð27Þ

Alternatively, if simple harmonic motion is assumed with a stiffness klinear given by

klinear ¼
Fmax

DxH

¼
4

3

15

16

� �1=5

R�2=5E�4=5m�1=5Dv2=5; ð28Þ

the impact duration will be approximately given by

Tp ¼ p

ffiffiffiffiffiffiffiffiffiffiffi
m�

klinear

s
¼ 2:74

m�2

R�E�2Dv

� �1=5

; ð29Þ
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which is close to expression (27) obtained by numerical integration of the force–deflection curve.
This implies that for the more general case, where both the effect of shell action and Hertzian
contact stiffness are included, using an effective linear stiffness as given by Eq. (12) to obtain an
approximate time of impact, rather than the more accurate integration of the force–deflection
curve, will, at most, underestimate the time of impact by 5% (ð2:7422:87Þ=2:87�100 ¼ �4:5%).

2.4. Simplified analytical model: explicit expression for Fmax

Although the implicit expression given by Eq. (9) can straightforwardly be solved for Fmax from
which the other impact characteristics can be obtained, in order to draw some interesting
conclusions it will prove useful to obtain approximate explicit expressions. Explicit expressions
can be obtained by introducing a further simplification, namely that the Hertzian contact stiffness
is given by Eq. (28). The approximate linear stiffness of the system k0

effec combining the linearized
Hertzian stiffness (Eq. (28)) and the shell-membrane stiffness (Eq. (4)) will be given by

k0
effec ¼

klinearksh

ðklinear þ kshÞ

¼
R�2=5E�4=5m�1=5Dv2=5Eshh2

1

2:3
R�2=5E�4=5m�1=5Dv2=5Rsh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2shÞ

q
þ
3

4

16

15

� �1=5

Eshh2

" #: ð30Þ

It should be stressed that using the above expression for the stiffness of the system is not
equivalent to solving the implicit Eq. (9) for Fmax and then obtaining the effective linear stiffness
keffec from Eq. (12) (except, of course, for the special case ksh-N). Since the Hertzian contact
stiffness is a stiffening non-linear spring (F ¼ kHDx

3=2
H ) and the above assumption approximates

the effective linear stiffness of the Hertzian spring by assuming the impact is wholly absorbed by
the Hertzian spring, the overall stiffness will be overestimated. Using Eq. (30) will therefore
provide an upper bound on both the peak force transmitted and the acceleration of the system and
a lower bound on the impact duration. Explicit equations can now be obtained and are given by

m�Dv2 ¼
F2

max

k0
effec

; ð31Þ

Fmax ¼
R�1=5E�2=5m�3=5Dv6=5E

1=2
sh h

1ffiffiffiffiffiffi
2:3

p R�1=5E�2=5m�1=10Dv1=5R
1=2
sh ð1� n2shÞ

1=4 þ

ffiffiffi
3

p
2

16

15

� �1=10

E
1=2
sh h

" #; ð32Þ

amax ¼
Fmax

msh

; ð33Þ

Dx ¼ Dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

16

15

� �1=5
m�4=5

R�2=5E�4=5Dv2=5
þ

m�Rsh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2shÞ

q
2:3Eshh2

vuut
; ð34Þ
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Tp ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

16

15

� �1=5
m�4=5

R�2=5E�4=5Dv2=5
þ

m�Rsh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2shÞ

q
2:3Eshh2

vuut
: ð35Þ

2.5. Pressure response in the fluid: predicting the onset of high-pressure transients

In previous work by Young and Morfey [10] it was shown that the onset of dynamic effects for
fluid-filled spherical shells, and in particular the onset of large positive and negative pressure
transients at the pole and anti-pole, could be conveniently predicted using the ratio of the period
of oscillation of the first n ¼ 2 spheroidal mode of vibration of the fully free shell TO and the
duration of impact TP: It was later shown that the first n ¼ 2 spheroidal mode of vibration was
equi-voluminal and, for a very wide range of thicknesses, dominated by membrane action [11]. An
approximate closed-form expression that accurately predicts the period of oscillation TO was
derived based on the exact solution for a membrane filled with incompressible fluid for the
spherical shell case

TO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pð5þ nshÞmsh

8hEsh

s
: ð36Þ

For h=Rfo0:4 and for E=B�h=Rfo1; the maximum error in using the above approximate
equation was shown to be less than 10% when compared with solving the problem using full
three-dimensional elasticity equations.
It was shown in Ref. [10] that for a ratio of impact duration Tp to period of oscillation TO

greater than approximately 4 ðTp=TO > 4Þ the pressure response in the fluid was essentially
hydrostatic, with a linear pressure gradient varying from a maximum positive peak pressure Pquasi

under the site of impact (pole) to a minimum negative peak pressure �Pquasi at the anti-pole. Here
Pquasi is straightforwardly given by

Pquasi ¼ Rf rf Fmax=msh: ð37Þ

For shorter impact durations (Tp=TOo4) dynamic transient pressures were observed at both
the pole and anti-pole, with increasingly high peak pressures as this ratio dropped significantly
below 2 (up to eight times those predicted by the hydrostatic equation above). For more
information on these pressure transients the reader is referred to the work by Young and Morfey
[10].
In the case of a Hanning1 force–time history applied radially over a small spherical cap, the

dynamic magnification is approximately given by

Pmax

Pquasi

¼ �32e�2ðTp=TOÞ: ð38Þ

Eq. (38) gives the ratio of the maximum negative pressure Pmax in the fluid directly under the
site of impact (at the pole) over the quasi-static pressure Pquasi; it has been obtained based on
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1A Hanning force–time history [F ðtÞ ¼ Fmaxð1=2� 1=2ðcosðpt=TpÞÞ] is a reasonable approximation of the actual

force–time history for an impact which will lie between a half-sine [F ðtÞ ¼ Fmax sinðpt=TpÞ] and a half-sine to the 3/2

[FðtÞ ¼ Fmax sinðpt=TpÞ
3=2] depending on the relative contributions of the Hertzian and shell/membrane stiffnesses.
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numerical results given in Ref. [10] for Tp=TO values between 0.5 and 2 (R2 > 0:97). By using the
analytical model presented above, the impact duration Tp can be predicted and the likelihood of
the pressure response in the fluid exhibiting large dynamic pressure transients can be assessed.
This can be done on a case by case basis by solving the implicit equation for Fmax (Eq. (9)), and
then obtaining the ratio Tp=TO:
However, in order to be able to draw a priori some broad conclusions regarding the nature of

the pressure response in the fluid, an approximate explicit expression can be obtained based on the
simplified explicit expressions derived above in Section 2.4.

2.5.1. Approximate explicit expression for Tp/TO

Using the approximate expression for the time of impact Tp given by Eq. (35) and the
approximate expression for TO given by Eq. (36), an approximate explicit expression for Tp=TO

can be obtained.
As was previously discussed, Tp is underestimated by expression (35) and the resultant

expression for Tp=TO will therefore probably be a lower bound. Since the approximate expression
derived for TO is applicable to fluid-filled spherical shells only, the mass of the shell msh can be
expressed as

msh ¼
4

3
pR3

shrsh

rf

rsh

þ 3
h

Rsh

� 3
h

Rsh

� �2

þ
h

Rsh

� �3
 !

1�
rf

rsh

� �" #
: ð39Þ

On introducing the above expression for msh into Eqs. (35) and (36) and simplifying, the
following expression for Tp=TO is obtained

TP

TO

¼


128
5

� �1=5 p4=5
ð5þnshÞ

c
Dv

� �2=5 h
Rsh

� �
msol

msolþmsh

� �4=5
1þ Rsh

Rsol

� �2=5
ð1� n2shÞ þ ð1� n2solÞ

Esh

Esol

� �
rf

rsh
þ 3 h

Rsh
� 3 h

Rsh

� �2
þ h

Rsh

� �3� �
1�

rf

rsh

� �
 �1=5
1þ msh

msol

� �4=5
4=5

þ
8p
6:9

Rsh

h

� �
ð1� n2shÞ

1=2

ð5þ nshÞ 1þ msh

msol

� �
0
@

1
A

0
BBB@

1
CCCA

vuuuuuut :

ð40Þ

Here c is the wave speed in the shell given by c ¼ ðEsh=rshÞ
ð1=2Þ: Eq. (40) is an expression for

Tp=TO as a function of the non-dimensional parameters msol=msh; Rsol=Rsh; Esol=Esh; h=Rsh; c=Dv;
nsh; nsol and rf =rsh: The first term under the square root represents the contribution from the
Hertzian contact deformation and the second term represents the contribution from the shell-
membrane and bending deformations. It is interesting to note that the ratio Tp=TO increases as a
function of ðh=RshÞ

ð1=2Þ for the Hertzian contact component, but increases as a function of
1=ðh=RshÞ

ð1=2Þ for the shell-membrane and bending component. One should also note that Tp=TO is
not a function of the bulk modulus of the fluid as neither the impact duration nor the period of
oscillation are functions of the bulk modulus.
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3. Results and discussion

A series of parametric studies for values about those typical for the human head has been
carried out by the author and results obtained using the analytical equations have been compared
to numerical results obtained using both finite element and experimental models and some
preliminary results have been presented in Refs. [12–14]. However, it is instructive at this stage if
the analytical equations derived above are used to explore the response for a range of parameter
values and for a number of special cases. It should be stressed that in some cases portions of the
curves plotted will lie outside the range of applicability of the proposed theory. It is also
important to recall that the derived equations are only valid for small deformations and assume a
linear elastic material response.

3.1. Peak transmitted force: select parametric studies and comparison with shell and Hertz theories

An alternative non-dimensional implicit expression equivalent to Eq. (9) can be derived which
will be useful for exploring the behaviour of the system to changes in various parameters. In
general, the mass of the shell can be expressed as

msh ¼ R3rsh densfunc
rf

rsh

;
h

R
?

� �
; ð41Þ

where R is a characteristic length of the shell and densfunc is a non-dimensional function of the
geometry and density of the shell. For the particular case of a fluid-filled spherical shell msh is
given by Eq. (39), where R ¼ Rsh and

densfunc ¼
4

3
p

rf

rsh

þ 3
h

Rsh

� 3
h

Rsh

� �2

þ
h

Rsh

� �3
 !

1�
rf

rsh

� �" #
:

Substituting expressions for ksh and kH Eqs (2) and (4) into Eq. (9) as well as expression (41) for
msh and after some rearranging we have

Fmax

EshR2

� �2
R

h

� �2
c

Dv

� �2
1þ

msh

msol

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2sh

q
2:3

þ
3

5

Fmax

EshR2

� �5=3
c

Dv

� �2
1þ

msh

msol

� �
1þ

Rsh

Rsol

� �1=3

� ð1� n2shÞ þ ð1� n2solÞ
Esh

Esol

� �2=3

�
msh

R3rsh

¼ 0: ð42Þ

The first term in the equation is due to local membrane and bending deformations and the
second term is from the localized Hertzian deformation.
The non-dimensional maximum force transmitted parameter Fmax=EshR2

sh was computed using
this equation and also by alternately neglecting the Hertzian stiffness component and the
membrane/bending stiffness component; the three different solutions obtained in this manner are
referred to in the graphs as the combined, shell and Hertz solutions, respectively. Impacts were
against a rigid (Esh=Esol ¼ 0) half-space (infinite mass msh=msol ¼ 0 and flat contact surface
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Rsh=Rsol ¼ 0). The Poisson ratio of the shell was assumed to be 0.25 and the density ratio was
assumed to be rf =rsh ¼ 1=2 (approximate ratio for the density of brain to skull bone).
In Fig. 2 Fmax=EshR2

sh is plotted for a range of thickness ratios h=Rsh ranging from 0 to 0.6 for a
wave speed ratio c=Dv equal to 1000 (approximately equivalent to a 2.5m/s impact for skull bone).
As would be expected, for small thickness ratios the peak force transmitted decreases and the shell
theory solution tends towards the combined solution as the flexibility of the shell dominates. On
the other hand for thicker shells, the Hertzian flexibility is dominant and the peak force
transmitted predicted by the Hertzian theory tends towards the combined solution. What is
surprising, however, is the range of thickness ratios for which neither Hertz nor shell solutions
provide accurate results. This is shown more clearly in Fig. 3 where the percentage difference
between the shell and combined solutions and Hertz and combined solution are plotted. If both
stiffness components are not considered, the error is greater than 15% for shell thickness ratios
between 1

10
and 2

5
:

In Fig. 4 Fmax=EshR2
sh is plotted for a range of wave speed ratios ranging from close to zero to

1
1000

for a thickness ratio h=Rsh ¼ 1=5: Because of the non-linear spring stiffening behaviour of the
Hertzian component of stiffness for low impact velocities the flexibility is dominated by the
Hertzian component, whereas for higher impact velocities the shell flexibility component becomes
more significant. This is shown clearly in Fig. 5 where the percentage error is again plotted for
both the Hertz and shell theories when compared with the combined theory.

3.2. Special case: constant energy impacts (1/2 m*Dv2=constant)

For impacts on a fluid-filled shell of constant impact kinetic energy 1=2m�Dv2 it is obvious from
Eqs (9)–(11) that the peak force Fmax; peak acceleration amax and the deformations DxH and Dxsh

ARTICLE IN PRESS

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 0.1 0.2 0.3 0.4 0.5 0.6

h/Rsh

F
m

a
x
/(

E
s

h
R

s
h

2
)

Fig. 2. Non-dimensional maximum force transmitted Fmax=ðEshR2
shÞ as computed using shell only theory, Hertz only

theory and combined theory for a range of shell thicknesses. ( ) Combined; (– – – ) shell; (- - - -) Hertz.

P.G. Young / Journal of Sound and Vibration 267 (2003) 1107–11261118



predicted will not be a function of m� (i.e., not a function of msol=msh). However, the time of
impact Tp; as given by Eq. (13), will clearly vary as a function of Om�: Defining TN as the impact
duration, HICN as the HIC value and FN as the maximum force transmitted for an impact of
given energy with a ball of infinite mass (i.e., msol=msh-N; or equivalently m�-msh), then the
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ratios Tp=TN and HIC=HICN are given by the same expression

Tp

TN

¼
HIC

HICN

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 1þ

msh

msol

� �� �s
ð43Þ

and Fmax=FN is given by

Fmax

FN

¼ 1; ð44Þ

which are plotted in Fig. 6. As the mass of the impactor decreases both the durations of impact
and the HIC values drop but the maximum force transmitted remains constant.
Defining DvN as the impact velocity with a projectile of infinite mass of equivalent energy to the

impact considered, or in other words

1
2

mshDv2
N

¼ 1
2
m�Dv2 ð45Þ

then,

Dv=DvN ¼ ðmsh=m�Þ1=2 ð46Þ

substituting Eq. (44) into the approximate expression for Tp=TO given by Eq. (40) and rearranging
a useful expression for Tp=TO for impacts of constant energy is obtained
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Tp

TO
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ
msh

msol

vuut

128
5

� �1=5 p4=5
ð5þnshÞ

c
DvN

� �2=5
h

Rsh

� �
RsolþRsh

Rsol

� �2=5
ð1� n2shÞ þ ð1� n2solÞ

Esh

Esol

� �
rf

rsh
þ 3 h

Rsh
� 3 h

Rsh

� �2
þ h

Rsh

� �3� �
1�

rf

rsh

� �
 �1=5
4=5

þ
8p
6:9

Rsh

h

� �
ð1� n2shÞ

1=2

ð5þ nshÞ

 !vuuuuuut :

ð47Þ

For the impact of a rigid flat projectile (Esh=Esol-0; Rsh=Rsol-0) on a fluid-filled shell of
thickness ratio h=Rsh ¼ 0:1; of density ratio rf =rsh ¼ 1=2; the Poisson ratio nsh ¼ 0:25 and
c=DvN ¼ 1000; the ratio Pmax=Pquasi (maximum negative pressure at the pole over quasi-static
positive pressure prediction—Eq. (38)) will be given by

Pmax

Pquasi

¼ �32e�6:14
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=ð1þmsh=msolÞÞ

p
;

which is plotted along with Tp=TO; against msh=msol in Fig. 6. The graph clearly shows that the
HIC value decreases with decreasing projectile mass, whereas the observed peak pressures increase
rapidly; there is therefore an obvious and dramatic disagreement between use of peak pressure
(whether positive or negative) as an injury criterion and the HIC for impacts with low mass
projectiles. It must be stressed however that as the peak pressures increase dramatically, the
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duration of these peak pressures decreases which might significantly affect their potential to cause
damage [18].

3.3. Onset of large pressure transients in the fluid: select parametric studies

3.3.1. Impact with a rigid infinite mass
Consider the impact of a fluid-filled shell with a rigid infinite mass (Esol=Esh-N;

msol=msh-N) and assume the Poisson ratio of the shell nsh to be 0.25, the density of the fluid
to density of the shell to be rf =rsh ¼ 1=2 and the wave speed to impact velocity ratio to be
c=Dv ¼ 1000: In Fig. 7, the non-dimensional ratio Tp=TO (as computed using Eq. (40)) is plotted
against the thickness ratio h=Rsh for a number of radius of curvature ratios: Rsh=Rsol ¼ 0 (a flat
impact surface), Rsh=Rsol ¼ 10 (a curved convex impact surface) and Rsh=Rsol ¼ �0:9 (a concave
impact surface almost conforming to the shell radius of curvature). For convex surfaces the non-
dimensional ratio is higher as the Hertzian contact stiffness is lower and tends to a minimum as
the impact surface becomes progressively concave (tends to a conforming impact). However, it
can be seen that the ratio Tp=TO does not drop below a value of 2 for the range of thickness ratios
considered here (0oh=Rsho0:3). The implication is that for impacts with an infinite mass object
(e.g., the ground), significant dynamic pressure transients are unlikely to occur.

3.3.2. Influence of msh/msol: predicting the onset of dynamic effects

Eq. (40) can be solved for Tp=TO ¼ 2 for a range of parameter values in order to establish an
approximate boundary between high-pressure transients developing in the fluid and a quasi-static
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regime. Let us assume for all cases that the impactor has zero, or negligible, curvature at the
impact site (in other words a flat impact surface, Rsh=Rsol ¼ 0).
In Fig. 8 the mass ratio msol=msh for which Tp=TO is equal to 2 is plotted against h=Rsh for a

number of impact velocity to wave speed ratios Dv=c ranging from 1
50
(approximately equivalent to

a 100m/s impact velocity for a steel shell and 50m/s for skull bone- and clearly outside the range
of applicability of the equations given) to 1

2000 (approximately 2.5m/s impact for steel shell and
1.25m/s for skull bone). For this case rf =rsh ¼ 1=2; Esh=Esol ¼ 0; nsh ¼ nsol ¼ 0:5: Below the
curves the ratio Tp=TO is less than 2 and a dynamic response is probable—above the curves a
significant dynamic response is unlikely. As can be seen, even for a rigid impactor, a dynamic
response is unlikely unless the impactor is of roughly the same mass or less than that of the fluid-
filled shell. The curve obtained by including only the shell stiffness parameter (neglecting the
Hertzian contact stiffness) is also plotted and only denoted shell (It is equivalent to the limiting
case Dv=c-N:) It is interesting to note again the significant contribution of the Hertzian contact
stiffness even for moderately thin shells.
In Fig. 9 the mass ratio msol=msh for which Tp=TO equals 2 is plotted against h=Rsh for a number

of Young’s modulus ratios Esh=Esol ranging from 0 (rigid impactor) to 2. (For this case rf =rsh ¼
1=2; c=Dv ¼ 1000; nsh ¼ nsol ¼ 0:25). As would be expected as the stiffness ratio increases the
predicted mass ratio to induce a dynamic response also decreases.

4. Conclusions

Analytical expressions have been derived for the response of fluid-filled shells to impact. The
analytical model is based on decoupling the Hertzian contact deformation from localized
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membrane and bending deformations to provide approximate expressions for key impact
parameters including maximum force transmitted, peak acceleration of the shell and duration of
impact.

* The proposed analytical model is applicable to fluid-filled shells of arbitrary shell thickness,
from very thin shells to solid spheres, subject to constraints defined by the limits of
applicability. It should be noted that the usual limits of applicability can be somewhat relaxed if
the global impact characteristics, such as the peak force transmitted, are of primary interest as
opposed to a more localized characterization of the response, such as the stress or strain field in
the vicinity of the impact area.

* The proposed analytical model is applicable to fluid-filled shells and empty shells. In fact, the
fluid bulk modulus has no effect on the response and a shell filled with a very low-density
incompressible fluid will have the same response as an empty shell. This is true not only of the
global impact response but also of the onset of high-pressure transients which is also not a
function of the fluid bulk modulus. This point is highly relevant as it explains why both global
impact parameters as well as the onset of dynamic effects are not observed to be ostensibly
influenced by the presence of a hole, to model the foramen magnum, for example, in numerical
and experimental simulations carried out by the author [12,13]. (Although the presence of a
hole in the shell will in the quasi-static regime shift the location of the zero pressure nodal point
as discussed by a number of authors.)

* Both the Hertzian contact stiffness and the stiffness component from shell bending and
membrane action are local effects and therefore the proposed model is applicable to a much
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wider range of shell and solid body geometries providing the shell curvatures in the region of
the impact are of approximately spherical curvature and constant thickness.

Furthermore, a number of interesting conclusions can be drawn regarding the behaviour of
fluid-filled shells to impact:

* For a remarkably wide range of thickness ratios encompassing values typical for the human
head, both local shell-membrane and bending deformations and Hertzian contact deformations
need to be considered. The use of thin shell theory to model head impacts could therefore lead
to significant errors in the predicted response.

* The impact duration drops as the mass of the projectile drops and short impact durations were
previously shown to cause very high-pressure transients in the brain. It was here shown that
impacts with very heavy objects (e.g., the ground) were unlikely to ever lead to the onset of such
large dynamic pressure transients. However, impacts with objects lighter than the fluid-filled
shell could cause high-pressure transients to occur; a simple approximate formula (40) was
derived to assess the likelihood of a dynamic response of the fluid.

* For a constant impact energy, as the mass projectile drops below a certain threshold the peak
pressures observed will increase dramatically, whereas the head injury criterion (HIC) will
decrease; there is therefore an obvious discrepancy between use of peak pressure (whether
positive or negative) as an injury criterion and the HIC for impacts with low mass projectiles

* The relative radius of curvature was shown to have relatively little effect on the global response
characteristics (although it will obviously have a significant influence on the observed stresses in
the contact area).
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